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On pattern formation mechanisms for lepidopteran wing patterns
and mammalian coat markings

By J. D. MurrAY

University of Oxford, Mathematical Institute,
24-29 St Giles, Oxford 0X1 3LB, U.K.

The patterns on wings of Lepidoptera can be generated with a few pattern elements,
but no mechanism has been suggested for producing them. I consider two of the basic
patterns, namely, central symmetry and dependent patterns. A biochemically plausible
model mechanism is proposed for generating major aspects of these patterns, based on
a diffusing morphogen that activates a gene or colour-specific enzyme in a threshold
manner to generate a stable heterogeneous spatial pattern. The model is applied to
the determination stream hypothesis of Kithn & von Engelhardt (Wilhelm Roux Arch.
EntwMech. Org. 130, 660 (1933)), and results from the model compared with their
microcautery experiments on the pupal wing of Ephestia kihniella. In the case of de-
pendent patterns, results are compared with patterns on specific Papilionidae. For
the same mechanism and a fixed set of parameters I demonstrate the important roles
of geometry and scale on the spatial patterns obtained. The results and evidence
presented here suggest the existence of diffusion fields of the order of several milli-
metres, which are very much larger than most embryonic fields. The existence of
zones of polarizing activity is also indicated.

Colour patterns on animals are considered to be genetically determined, but the
mechanism is not known. I have previously suggested that a single mechanism that
can exhibit an infinite variety of patterns is a candidate for that mechanism, and
proposed that a reaction-diffusion system that can be diffusively driven unstable could
be responsible for the laying down of the spacing patterns that generates the pre-
pattern for animal coat markings.

For illustrative purposes I consider a practical reaction mechanism, which exhibits
substrate inhibition, and show that the geometry and scale of the domain (part of the
epidermis) play a crucial role in the structural patterns that result. Patterns are
obtained for a selection of geometries, and general features are related to the coat
colour distribution in the spotted Felidae, giraffe, zebra and other animals. The
patterns depend on the initial conditions, but for a given geometry and scale are
qualitatively similar, a positive feature of the model and a necessary model attribute
in view of the pattern individuality on animals of the same species.
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1. INTRODUCTION AND BACKGROUND

The development of pattern is naturally of consuming interest in developmental biology. Most
experimental studies of biological pattern formation and model mechanisms for them have
been concerned with early patterns in the ontogeny of complex organisms or with regeneration.
The phenomenological positional information approach (Wolpert 1971) and later work on the
chick limb based on it (see, for example, Summerbell & Tickle 1977; Wolpert & Hornchurch
1981; Smith & Wolpert 1981; also further references therein) and the regulatory intercalation
model (French et al. 1976) are major examples. Meinhardt (1978) reviews several of the many
model mechanisms that have been studied.
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474 J. D. MURRAY

Although the development of the colour pattern on the integument of mammals and wings
of butterflies and moths occurs towards the end of morphogenesis, it reflects an underlying
pre-pattern that is laid down much earlier. With mammalian markings the pre-pattern is
almost certainly laid down in the very early stages of embryonic development (in the first few
weeks) while that of lepidopteran wing patterns mainly during the early pupal stage or in some
cases just before it (Nijhout 19804).

No specific mechanism has yet been proposed for the pattern formation on wings. However,
in mammalian coat markings a universal reaction—diffusion mechanism has been suggested for
pre-pattern formation (Murray 1979, 1981).

In this paper I propose a primitive model mechanism for wing patterns that involves a
diffusing morphogen and a biochemically plausible gene or colour-specific enzyme activation
switch process for generating some frequently occurring pattern elements in lepidopteran
wings. It is applied to various experiments concerned with the effect of cautery on wing patterns
and the determination stream hypothesis (Kithn & von Engelhardt 1933). I also describe
briefly the proposed mechanism for mammalian coat markings (Murray 1979, 1981) and present
some general and further results on patterns obtained, and compare them with those found
on specific animals like the Felidae, zebra and giraffe. A major feature of these model mechanisms
(and any pattern formation mechanism) is the critical dependence of pattern on the geometry
and scale of the integument. In the mechanism for mammalian coat patterns I suggest that
they are possibly the most important factors in their determination. At first sight the diversity
of mammalian patterns might appear to indicate that several mechanisms are required: I show
here that this is not necessarily so.

The study of butterfly colours and wing patterns has a long history. A major survey of the
field at the end of the nineteenth century is given by Mayer (1897). The extensive work on
wing patterns carried out since 1920, mainly between 1924 and 1948, and associated with, for
example, Henke (1928, 1933, 1943, 1948), Kithn (1926, 1936; Kithn & von Engelhardt 1933),
Suffert (1927, 1929), Schwantwitsch (1924, 1925, 1929, 1935) and their coworkers is reviewed
by Sondhi (1963). A succinct and definite review of the major elements in lepidopteran wing
patterns is given by Nijhout (1978). Recently, on the basis of a large number of experiments,
Sibatani (1980) has surveyed wing homoeosis in Lepidoptera.

The formation of the wide variety of pattern found on wings has been shown (Siiffert, 1925,
1927, 1929) to be made up of relatively few pattern elements. Of these, central symmetry patterns
are common, particularly so in moth wings, and at their simplest consist of approximately
mirror image patterns about a central anterior—posterior axis across the middle of the wing.
They were studied extensively (Kithn & von Engelhardt 1933) in an attempt to understand
the pattern formation in the wings of Ephestia kiihniella. They proposed a phenomenological
model in which a ‘determination stream’ emanates from sources at the anterior and posterior
edges of the wing and progresses as a wave across the wing to produce anterior—posterior bands
of pigment (see figure 15). They carried out microcautery experiments on the pupal wing; the
results support their hypothesis. Work by Henke (1948) on ‘spreading fields’ in Lymantria
dispar also supports this hypothesis. Results from the model mechanism in this paper are com-
pared with these experiments in § 3 below. The model relies on scale-forming stem cells in the
epithelium reacting to the underlying patterns laid down during the pupal or just pre-pupal
stage. Goldschmidt (1920) suggested that primary patterns may be laid down before the pattern
is seen: accumulated evidence since then seems to confirm this.

[ 48]
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Occeli are important elements in many butterfly wings and pose a challenging pattern
formation problem. Seminal work in this area has been done by Nijhout (1978, 19804, b).
Nijhout (1978) postulates a gradient model based on a conical distribution with the apex as
the reference point for positional information: the apex is considered to be the focus of the
occelus. Nijhout (19804) presents evidence, from experiments on the nymphalid butterfly
Precis coenia, that the foci are the influencing factors in surrounding pattern formation. The foci
generate a morphogen the level of which activates a colour-specific enzyme. Melanogenesis in
Precis coenia involves melanins (Nijhout 19805) not all produced at the same time. Sibatani
(1980) proposes an alternative model based on the existence of an underlying pre-pattern and
suggests that the occelus-forming process involves several interacting variables. These two
models are not necessarily mutually exclusive since a positional information model relies on
cells reacting in a specified manner to the concentration level of some chemical: this could
involve, in Nijhout’s (1978) model, the morphogen generated at the occelus eye reacting to an
underlying pattern. It is possible that if a model mechanism could be found which can generate
occeli patterns then the variety of effects on occeli that span wing ‘cells’ (regions on the wing
bounded by veins and wing edge: see figure 1a) could be inferred. Also, the existence of under-
lying pre-patterns could perhaps be determined.

The cautery work of Kiihn & von Engelhardt (1933) suggests that there are at least two
mechanisms in the pattern formation in Ephestia kiihniella, since different effects are obtained
depending on the time after pupation that the cauterization is done. There are probably several
independent pattern-formation systems operating, as was suggested by Schwantwitsch (1924)
and Siiffert (1925, 1927). However, the same mechanism, such as that discussed in this paper,
could be operating at different times, which could imply different parameter values and different
geometries and scale to produce quite different patterns. Possibly the number of melanins
present indicates the minimum number of mechanisms.

One reason for studying wing pattern in Lepidoptera is to try to understand them with a
view to finding a pattern formation mechanism (or mechanisms) that produces them. Such a
model mechanism must involve differentiation in time and space. Another reason is to present
evidence, admittedly circumstantial, for the existence of diffusion fields greater than about
100 cells, which is about the maximum found so far: here I believe that fields of the order of
5mm exist. From a modelling point of view an interesting aspect is that the evolution of pattern
is essentially two-dimensional, which necessitates an understanding of the roles of geometry and
scale. I thus wish to demonstrate the seemingly different patterns that can be generated with the
same mechanism simply by its activation at different times on different geometries or scale,
or both.

In § 2 T describe my model mechanisms with the mathematical details given in the appendix,
and show how a simple spatial pattern can be generated with central symmetry and dependent
patterns in mind. In § 3 I present some numerical solutions from my model for central symmetry
patterns and compare relevant cases with experiment, particularly on Ephestia: there is en-
couraging qualitative agreement. With dependent patterns, which are particularly prevalent in
Papilionidae and nymphalid butterflies, I present some computed solutions from this mechanism
and compare them with known facts and typical members of a large class of butterflies that
exhibit marked dependent patterns.

Mammalian coloration is due to melanin in the epidermis. The melanin is present in pigment
cells (melanocytes), which derive from embryonic neural crest material. Epidermal distribution
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of melanocytes is not uniform. Graft experiments indicate that melanogenesis is related to the
availability of some substrate. The essentials of melanogenesis are given by the Raper-Mason
theory (see Nicolaus 1968) in which tyrosine, a precursor of melanin, is oxidized to DOPA in
the presence of the enzyme tyrosinase. Further oxidations result in melanin.

Few detailed experimental studies have been made on epidermal patterns in vertebrates.
Notable exceptions are those with chimeric mice, a definitive survey and review of which are
given in the book by McLaren (1976).

Searlc (1968), in his book on comparative genetics of animal coloration, hypothesized that a
reaction—diffusion mechanism might be appropriate for pattern formation. For zebra, Bard
(1977) proposed that a single mechanism, as yet unknown, is responsible for the stripe pattern.

For illustrative purposes I consider a substrate inhibition reaction mechanism studied experi-
mentally by Thomas (1976) and discuss some of the patterns that can be obtained by a Turing
(1952) type of diffusion driven instability. In particular I demonstrate their critical dependence
on geometry and scale. General and recurring characteristics are shown to be closely related
to those in various animal coat patterns. A pedagogical discussion of some practical applications
of reaction—diffusion systems in general is given in Murray (1977).

I have discussed fully (Murray 1979, 1981) the model mechanism described here, the diffusion-
driven instabilities that result in steady-state spatial patterns and the application to a variety
of mammalian markings. (This reaction-diffusion mechanism has also been studied by Bunow
et al. (1980), considering Drosophila wing compartments.) I suggested that a reaction—diffusion
mechanism could be responsible for most of the coloration patterns on animals. That a single
mechanism could suffice has also been suggested by G. H. Findlay (personal communication
1979) from his work with zebra and giraffe. In § 4 I briefly describe the model, give some further
results for a variety of geometries and compare them with the typical markings on specific
animals to substantiate my hypothesis; details and the mathematical analysis are given elsewhere
(Murray 1981).

2. MODEL MECHANISM FOR CENTRAL SYMMETRY AND DEPENDENT PATTERNS
ON LEPIDOPTERAN WINGS: DIFFUSING-MORPHOGEN—-GENE-ACTIVATION
SYSTEM

Crossbands of pigment running generally from the anterior to the posterior of wings of butter-
flies and moths are possibly the most prevalent. Dislocation of these bands along wing cells,
that is regions bounded by veins and a wing edge, can give rise to a remarkably wide variety
of patterns (see, for example, Schwantwitsch 1925, 1929; Siiffert 1927, 1929; Nijhout 1978).
Figure 1ais a diagram of a forewing of a generalized lepidopteran, and illustrates typical venation
including those in the discal cell (D), which later atrophy. The commonest manifestation of
crossbands is when they are arranged more or less symmetrically about a central axis, running
down the middle of the wing from the anterior to posterior: this is the central symmetry system.
Kiithn & von Engelhardt (1933) carried out an extensive series of experiments, using micro-
cautery at the pupal stage, to try to understand how such central symmetry patterns arose on
the forewing of the moth Ephestia kiikniella. Some of their results are illustrated in figure 4a—c
and seem consistent with the suggestion that a ‘determination stream’ is generated by sources
on the anterior and posterior edges of the wing (like zones of polarizing activity in fact), namely
at A and P in figure 1 5. The front of this ‘stream’ is associated with the position of the crossbands
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of the central symmetry system. The work of Schwartz (1962) on another moth tends to confirm
the existence of a determination stream for central symmetry systems. Experiments on such
streams and the related ‘spreading fields’ of Henke (1948) are reviewed by Sondhi (1963) and
Nijhout (1978). To date, it seems that neither the origin nor a mechanism that could produce
them has been found. Here I propose a possible biochemically plausible model mechanism and
compare results from it with those from experiment.

) P

morphogen

cubitus dorsal side

(d) (e)

FiGurE 1. (a) Forewing of a generalized lepidopteran with venation: A, anal; Cu, cubitus; M, media; R, radius;
Sc, subcosta; D, discal. Regions between veins are wing cells. Dotted lines represent veins that exist at the
pupal stage, but later atrophy. (b)) Hypothesized ‘determination stream’ for central symmetry pattern
formation (after Kithn & von Engelhardt 1933). (¢) Idealized pupal wing with A and P the anterior and
posterior sources of the determination stream (morphogen). (d) Schematic representation of the right pupa
wing approximately 6-12 h old (after Kithn & von Engelhardt 1933). (¢) Schematic cross section through
the wing vertically through the cauterized region, showing the upper and lower epithelia and veins (after
Kiihn & von Engelhardt 1933).

From the experimental work on Ephestia kiihniella (Kithn & von Engelhardt 1933), Plodia
interpunctella (Schwartz 1962) and Malacosoma americana (Nijhout 1978) it appears that the
critical period for laying down their central symmetry pattern is in the first 1-2 days after pupa-
tion. The effect of microcautery after this period is different to that during it (Kithn & von
Engelhardt 1933), hence the implication of more than one mechanism. The model that I propose
is for the earlier period, namely just after pupation.

In my primitive model we have sources of a morphogen S situated at A and P on the anterior
and posterior edges of the wing, which for simplicity (not necessity) in the numerical calculations
I idealize as shown in figure 1¢ to be a circular sector of angle 6 and radius 7, and 7,. At a given
time, genetically determined, in the pupal stage a given amount of morphogen is released and
it diffuses across the wing. The wing has an upper and lower epithelial surface layer of cells and
vein distribution such as illustrated in figure 14, e. The pattern on the upper and lower sides of
the wing are determined independently. As the morphogen diffuses it is also degraded in pro-
portion to its local concentration. The diffusion field is the wing surface and so we have zero

[51]


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsth.royalsocietypublishing.org

478 J. D. MURRAY

flux boundary conditions for the morphogen at the wing edges. The governing equation for
the morphogen concentration §, which is a function of the space variables r, 6 and time ¢ is then

oS 02§ 105 1028
5 - 2 (52 75+ 7aaga) ~ 7S, 2

i.e. (rate of change of § with time) = (diffusion of S) — (degradation proportional to §), where
D/(cm?s-1) is the diffusion coefficient and K /s~ the degradation rate constant. The parameter
7 is a scale parameter (see the appendix, where the non-dimensional model system is derived).
I't could be incorporated into the K but I retain it in this form since it can be varied to represent
change of scale. With //cm the reference length of a ‘standard wing’ (for example, that studied
by Kiihn & von Engelhardt (1933)) and a/cm the corresponding length in a similar wing,
y = a®/1?, a dimensionless number. Thus if we fix D, K and the geometry we can represent the
results for similar wings by a figure of the same size but with different y. For example y = 4
represents a similar wing to that with y = 1 but with linear dimensions twice that with y = 1.

A value for K at this stage would be purely speculative: it is probably species dependent. A
typical value for the diffusion coefficients D of the morphogen through cells is possibly of the
order of 2.7 x 10~ cm?s~1 (Crick 1970). Depending on the morphogen, and the fact that the
diffusion domain is quasi-two-dimensional, it could be larger. In their experimental work on
hair morphogenesis in Acetabularia (Harrison et al. 1980), a diffusion coefficient of the order
10-% cm?s~ was suggested. They considered a reaction—diffusion model for the hair spacing and
showed that the change in diffusion coefficient with temperature was reflected, as indicated by
their model, with hair spacing variation with temperature that they found experimentally.

Typical lengths envisaged for the diffusion field in my mechanism are of the order of several
millimetres, which is much larger than most embryonic fields. With L/cm a typical length of
interest, the diffusion time 7 to cover a distance L is of the order of L2/D. If pattern formation
takes place in the order of 1-2 days and say L ~ 5mm, a diffusion coefficient of the order of
1-2 x 10~6cm?s~1 would be required. This is not unreasonable, in fact, since mean diffusion
times in two and three dimensions can be quite different (Murray 1977). Consistent with a
diffusion process is the change, with temperature, in the mean rate at which eyespot determina-
tion spreads across the wing (by a comparable mechanism perhaps): Nijhout (19804) found it
to be 0.27 mm/day at 29 °C and 0.12 mm /day at 19 °C.

As S diffuses across the wing surface, let us consider the cells to react in response to the local
morphogen level, and a gene G to be activated by S to produce a product g and the kinetics of
the gene product to exhibit a biochemical switch behaviour: see figure 2. Such a mechanism can
effect a permanent change in the gene product level. Alternatively, a model, with similar
kinetics, in which the morphogen activates a colour-specific enzyme that depends on the local
morphogen level is also a possible mechanism. There are now many such biochemically plausible
switch mechanisms (see, for example, Edelstein 1972; Babloyantz & Hiernaux 1975). Although
it is not qualitatively critical which mechanism we use, to be specific let us consider here that
proposed by G. Mitchison and used by Lewis et al. (1977). Here the gene product is activated
linearly by the morphogen S, by its own product in a nonlinear positive feedback way and
linearly degraded proportional to itself. The governing equation for g, the concentration of g,
is (see also the appendix)

dg/dt = y(k,S+k, 82/(1 +g%) — ks g), (2)

[ 52 ]
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i.e. (rate of change of gene product with time) = (linear activation by the morphogen) + (self-
activation with positive feedback control) — (linear degradation), where as before 7 is the scale
factor described above, and £, k, and k; are positive constants. The product g is a function of
space (through ) and of time.

The threshold and switch properties of the mechanism (2) can be seen by considering the
schematic graph of y—'dg/d¢ as a function of g, as in figure 24, for various S. If k, and kg are

(b)

0 g, &, ga\\\\\ g 0

Ficure 2. (a) Ilustrative biochemical switch mechanism with typical bistable kinetics from (2): y-ldg/dt =
ky S+k, g%/(1+g%) —k, g. The graph shows y~'dg/d¢ against g for given appropriate &;, k;, k; and several
values of S. The critical S, is defined as shown with two stable steady states for § < §, and one, g = g, for
§ > S.. (b) Schematic behaviour of g as a function of time ¢ from (2) (as in (a)) for various pulses of § which
increase from § = 0 to a maximum S,,, and then decrease to § = 0 again. The lowest curve has the
smallest Sy, : successive curves have larger §,,,,. The final state of g, for large time, changes discontinuously
from g = 0 to g = g; if S, is greater than the critical §,.

appropriately ordered, namely k, > 2k; (see the appendix) the plotof y~1dg/dt against g exhibits
the qualitative S-like shape in figure 24. At a given time, say, ¢ = 0, suppose that g = 0 every-
where and the morphogen S is released from the wing sources. As S diffuses it activates the gene
product since with § # 0, dg/d¢ > 0 and so g increases with time as in figure 24, which are
typical curves for g as a function of time for a fixed S. If § never reaches the critical S,, then as
S decreases again to zero so does g after a long time. However, if § reaches S., or exceeds it to
say § = §; in figure 24, for a sufficient time, then g can increase sufficiently so that it tends to
the local steady-state equivalent to g; where dg/d¢ = 0 for that value of S. Now since §, governed
by (1), eventually tends to zero again, the kinetics curve in figure 24 returns to that with § = 0.
However, now the steady state is g = g;, whereas before it was g = 0; a switch has thus been
effected. The stable steady states for § = 0 are g = 0 and g = g,, with g = g, unstable (see the
appendix): stability and instability are indicated respectively by arrows towards and away from
the steady state. It is clear that the detailed kinetics of (2) are not critical as long as they exhibit
the threshold characteristics illustrated in figure 2.

We can now see how this mechanism, namely the coupling of (1) and (2), in which a finite
amount of morphogen S is released from A and P in figure 1¢, can generate a spatial pattern
in gene product (or colour-specific enzyme). The two equations have to be solved simultaneously.
The morphogen diffuses and decays as it spreads across the integument of the wing, and as it
does so it activates the gene G to produce g. If over a region of the wing § > S., then g may
increase sufficiently from g = 0 to move towards g, so that as § finally decreases again g continues
to move towards g, rather than return to ¢ = 0. The growth in g, governed by the differential
equation (2), is not instantaneous and so the true critical § is actually larger than S, in figure 2a.
The coupling of the two processes, diffusion and gene transcription, in effect introduces a time
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lag. Thus as the bolus of morphogen diffuses across the wing, as a quasi-wave (see figure 35),
it generates a domain of permanently non-zero values of g, namely g5, until along some curve
on the wing, § decreases sufficiently so that g returns to g = 0 with time rather than continue
increasing to g = g5. It is suggested that the determination stream of Kiihn & von Engelhardt
(1933) is a gene or enzyme activating morphogen diffusion-wave such as has been described
and that S comes from a zone of polarizing activity.

(a) (b)

veins (source of S)

—_————y— — —

)

N
wing cell (x=x9)
/ Sc ettt B
distal wing
edge t

F1Gure 3. (a) Idealized representation of a typical wing cell such as those bounded by the media, cubitus anal
veins, the discal cell (figure 1a) and the distal wing edge. In dependent patterns the veins are considered
the source of the gene or cell-specific enzyme activating morphogen. (4) Schematic one-dimensional solution
for the morphogen S from (1) (see appendix) as a function of time ¢ and distance x, measured perpendicularly
from a vein. This quasi-wave of S activates the switch mechanism of figure 22 and thus generates a spatial
pattern in g. Approximately for x < x,, the position where S ,, = S,, g tends to g = g; and for x > x,, g
tends to g = O for large time.

In § 3 I present some numerical results obtained from the model mechanism, compare relevant
cases with the microcautery experiments on Ephestia (Kiihn & von Engelhardt 1933) and
Lymantria dispar (Henke 1948) and demonstrate some geometry and scale effects on the spatial
patterns obtained.

Consider now dependent patterns in which pigment is restricted to the vicinity of the veins.
The above model is again a possible mechanism for generating patterns commonly observed.
Here I consider the morphogen to be released from the boundary veins of the wing cells. The
spatial pattern in g then has a high value of g in the vicinity of the veins and it could be the
pre-pattern reflected by the pigment-generating cells. For a given amount of S released, the
model shows that the width of the non-zero g-domain on either side of the vein is fixed for given
values of the parameters. This is heuristically clear: it is proved mathematicallyin the appendix.
This is consistent with the observation of Schwantwitsch (1924), on nymphalids and certain
other families, that although the width of intravenous stripes (in my model the region between
the veins where g = 0) is species-dependent, the pigmented regions in the vicinity of the veins
are the same size. In several species the patterns observed in the discal cell (D in figure 1a)
reflect the existence of the veins that subsequently atrophy: see figure 75, ¢ of the forewing of
the female Troides prattorum (Papilionidae).

In the model for dependent patterns I consider the wing cell as the unit and idealize it for
simplicity, as in figure 3a. In the median cells (see figure 1a) in particular, the veins are almost
parallel. In this case the mathematical problem of a vein source of morphogen is approximately
one-dimensional with, say, ¥ distance measured perpendicularly from the vein into the wing
cell. The problem for § then has an exact analytical solution (see the appendix). The solution
for § as a function of space x and time ¢ is illustrated schematically in figure 3. If x = x. is the
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distance from the vein (x = 0) at which the maximum S§ is S, then from the above discussion
we see that this is the maximum possible distance of the non-zero gene product region and,
from the model’s implication, of the pigmented area. If § = S; I show in the appendix that x,
in dimensional terms, is the unique solution of the equation (namely (A 10))

z+In[2n(z—1)8e/Sy] = 0, xc= (D/K)¥(z2—-1)3, (3)

where S, is the amount of morphogen released per unit length of vein. With D/(cm?s~!) and
K/s71, x. is in centimetres. Note that the distance depends only on the parameters and not the
scale, which, from observations, is the point noted by Schwantwitsch (1924). It will of course
vary from species to species since D and K do. Note that when the systems (1) and (2) are coupled,
the non-zero g-region will not move out as far as x. and so it is not the exact maximum value.
The larger vy is in (2), the more accurate it is. However, the dependence of the size of the pig-
mented area on the various parameters is the same as given by x. from (3). Since xcoc D? the
appropriate variation in size of the pigmented region should be temperature-dependent
accordingly.

Some numerical results from the model are presented in § 3 and, to support my hypothesis,
compared with wing pattern examples from various butterflies that exhibit such dependent
patterns.

3. CENTRAL SYMMETRY AND DEPENDENT PATTERNS: SCALE AND
GEOMETRY EFFECTS; COMPARISON WITH OBSERVATIONS
AND EXPERIMENTS

As described above, I shall consider here the central symmetry patterns to be generated by
a determination stream emanating from morphogen sources at the wing edges, as in figure
1b, ¢. T argued that a morphogen ‘wave’ progresses across the wing until the morphogen level
S has decayed to a critical concentration S, at which point the activation kinetics can generate
a permanent non-zero product level. I shall now relate the spatial boundary between the two
steady-state gene-product levels, the threshold front, with the determination front of Kiihn &
von Engelhardt (1933). The cells, which reflect the ultimate pigment distribution, are considered
to have positional information and react differentially in the vicinity of this threshold front.

Space- and time-dependent solutions of the governing equations (1) and (2) for the morphogen
and gene product were found by using a finite difference numerical scheme. There are several
parameters that could be varied since there are no estimates available for most of them. I decided
that the qualitative behaviour of the pattern formation mechanism and the critical roles played
by the geometry and scale could best be highlighted by choosing an appropriate set of values
for the parameters in (1) and (2), namely D, £, k,, k, and k; and keeping them fixed for all of
the calculations, the results of which are in figures 4-8. The parameter values did not have to
be carefully selected. In all of the central symmetry figures 4-6, a unit amount of morphogen
was released at the sources of the determination stream at the middle of the anterior and posterior
edges.

Consider first the experiments on Ephestia kiikniella. Figure 4a illustrates a normal wing with
typical markings with figure 45, ¢ showing the consequences of thermal microcautery (Kithn
& von Engelhardt 1933). Figure 44 is my idealized normal wing: the lightly shaded region is
the residual non-zero gene product left behind the determination wave of morphogen. When a
hole, corresponding to thermal cautery, is inserted in the idealized wing and the morphogen
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level is considered to be zero in the hole (that is morphogen diffusing into the hole is lost),
results corresponding to the geometry of the experiments are given in figure 4¢, f, which relate
respectively to figure 44, ¢c. Figure 4g is another example with a larger cauterization, while
figure 44 is of a comparably cauterized wing of Limantria dispar after Henke (1948). Figure 4¢1is
what the model predicts if cauterization removes the source of morphogen (the zone of
polarizing activity) at the posterior edge of the wing: no such experiments appear to have been
done to establish where the sources of the determination stream are.

hole hole
(c)

hole hole

(d) (e) ; ] (f)

(8)

hole hole hole

Ficure 4. Effect of cauterization on the central symmetry pattern. Parts (a)—(¢) are after the results of Kiihn
& von Engelhardt (1933) on Ephestia kiihniella (Pyralidae) during the first day after the pupation: (a)
normal wing, (4) and (¢) cauterized wing with the hole as indicated. (d) Idealized model normal wing in
which the ‘determination stream’ has come from sources at the middle of the anterior and posterior wing
edges: the hatched region represents a steady-state non-zero gene product. Parts (¢), ( f), (g) and (i) are
computed solutions from the model mechanism with cauterized holes as indicated. (%) Effect of cauteriza-
tion, during the first day after pupation, on the cross-bands of the forewing of Lymantria dispar (after Henke
1943). Model-experiment comparisons are (a)—(c¢), (6)—(e), (¢)-(f), (g)—(k). If cauterization removes the
determination stream’s source (zone of polarizing activity) of morphogen at the posterior edge, the pattern
predicted is as shown. Parameter values used in the calculations for equations (A 4) (appendix) for all of
(d)-(f), (&) and (h): k; = 1.0 = ky, ky = 2.1, k = 0.1, y = 160 and unit sources of §, & = 0.25 rad,

ry=1,r, = 3.

Even with such a primitive model the variety of patterns that can be generated is large. For
the same parameter values for D and the &’s, figure 5a—c illustrate for a fixed geometry some of the
effects of scale on the spatial patterns. These, of course, are as expected heuristically. Central
symmetry patterns are particularly common in moth wings. Figure 54, ¢ shows just two such
examples, namely the chocolate chip (Psodos coracina) and black mountain (Clostera curtula)
moths respectively, similar to figure 5a, 5.

The effect of geometry is also important. With circular sectors some geometric effects are
illustrated in figure 6 by simply varying the angle subtended by the anterior-posterior wing
edges. Again these are the patterns to be expected when morphogen sources are situated as
described above. With wing shapes of less regular geometry, the patterns are more diverse.

Now consider the model as it might apply to dependent patterns in which the veins are the
uniform source of the morphogen. Here I consider the model as operating on a single wing
‘cell’, typically figure 3a. I used the same parameter values as before for D and the £’s, but
now in place of unit sources at specific points I took a uniform source p of morphogen along the
proximal-distal veins and np along the anterior—posterior vein. I have in mind a typical median
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(@ A () A ) A
P P P

Ficure 5. Simple effects of scale on spatial patterns. Morphogen S is released from sources A and P. Parts (a)—(c)
illustrate solution patterns with the same set of parameter values (D = 1, k; = 1.0 = k3, k, = 2.1, k = 0.1,
r, = 1, r, = 3) in the model mechanism (1) and (2) for different domain sizes: @ = 1-0rad; (a) vy = 2;
(6) v = 6; (c) v = 40. A wing with y = y, (>7,) has linear dimensions 4/(y,/7v;) larger than that with
¥ = ;. The shaded region represents non-zero gene product. (d) Psodos coracina (Ennominae) and (e)
Clostera curtula (Notodontidae) are examples of two moth wings, the patterns of which are not uncommon.

(a) (b) (c)

(d) (e) (f)

Ficure 6. Simple effects of geometry on spatial patterns. Morphogen is released as for the calculations in figure 5
with the same parameter values (D = 1,k, = 1.0 = ky, ky = 2.1,k = 0.1, r, = 1, r, = 3) for all calcula-
lations from the model mechanism (1) and (2). Here ¥y = 10 for all cases, but the angle 8 of the sector is
varied: (a) 6 = 1.0 rad, (b) 6 = 0.975, (c) @ = 0.95, (d) 6 = 0.9, (¢) 6 = 0.8 and (f) 6 = 0.5.

wing cell and part of the discal vein at the proximal end of the cell: see figure 1a. I assume, as
before, that there are zero flux boundary conditions for S after the bolus of morphogen has been
released. Figure 7 illustrates a typical example of the computed solutions with figure 7a, d the
cell patterns, figure 74, ¢ the approximate resulting wing patterns generated and figure 7¢, f
specific, but typical, examples of the forewing of Troides hypolitus and T. haliphron respectively.
Such dependent patterns are quite common in the Papilionidae.

Figure 84, b shows schematic solutions from (3) on the assumption that the veins are approxi-
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wing
(@ enn

v
v

Ficure 7. Dependent patterns. (a), (d) Computed patterns from the model mechanism (1) and (2) for a wing
cell with parameter valuesk, = 1.0 = k;, k, = 2.1,D = 1,7y = 250, morphogen source strength in proximal—
distal veins (a) p = 0.075, (d) p = 0.015, and np = 0 on the cross veins. (b), (¢) Schematic predicted pattern
from the wing cell patterns in (a), (d) applied to the generalized wing of figure 1a: shaded regions have a
non-zero gene product. (¢), (f) Dependent patterns on the forewing of two Papilionidae: (c) Troides hypolitus,
(f) Troides haliphron.

wing cells
(a) ®

b)
N (

F1Gure 8. (a), (b) Idealized wing cells from the analytical solution (3) illustrating the effect of scale. The pattern
(unshaded) width is fixed for given parameter values. (¢c), (d) Dependent patterns from two Papilionidae:
(¢) Troides prattorum and (d) Iterus zalmixis.
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mately parallel. Figure 8¢, d shows examples of the forewings of Troides prattorum and Iterus
zalmoxis. Figure 8a, b illustrates the effect of scale directly. The qualitative behaviour of the
analytical solution (3) shows that the distance from the vein of the pigmented pattern depends
in a nonlinear way on the parameters and the amount of morphogen released. If these values
are fixed, the distance from the vein is independent of scale. That is, the mechanism shows that
the intravenous strips between pigmented regions vary according to how large the wing cell is,
in agreement with the observations of Schwantwitsch (1924): the two sets of results in figure 8
exemplify this.

4. A GENERAL PATTERN FORMATION MECHANISM FOR
MAMMALIAN COAT MARKINGS

I shall suppose the distribution of one of the critical components in melanogenesis to derive
from a reaction—diffusion mechanism. For illustration only I shall consider a specific substrate-
inhibition mechanism where an enzyme is immobilized on an artificial membrane on which a
substrate (s) and co-substrate (a) react and diffuse. The experimental arrangement (Thomas
1976) results in the model reaction—diffusion mechanism (Murray 1979, 1981) which in non-
dimensional form is

Oa/ot = f(s,a) + fV?a, 0s/ot = g(s,a)+ V3,
f(‘f, a) = y{oc(ao—a) —pF(J‘, a)}: g(s, a) = ')/’{SO—J‘—[)F(S, a)}) (4)
F(s,a) = sa/(1+s5+ Ks?),
for the concentrations s and a, which are functions of space and time ¢ sy, a, @, p, K, # and y

are constants. The f(s, a), g(s, a) represent the reaction kinetics, and #V2z and V2s the diffusion
terms: V2 is a shorthand form, which in Cartesian coordinates, for example, is 02/dx2 + 82 /0y2.

a fls,a)=0

steady
state

[=23

g(s,a)=0

3 \ s
Figure 9. Illustrative rate forms ¢ = 0, f = 0 for ds/dt = g(s,a), da/dt = f(s,a), the reaction kinetics for the

model mechanism (equations (4)). The steady states where ds/d¢ = 0 = da/dt, are the intersections of
f(s,a) = 0, g(s,a) = 0, namely (5,3).

The s, —s5 and a,—a terms represent flux terms to the reaction surface membrane. F(s,q) is the
empirical uptake term which for a given 4, for example, is like a Michaelis uptake for small s
but which exhibits inhibition for large s with X as the inhibition parameter. Figure 9 shows the
general form of the reaction kinetics for the mechanism: the S-like shape of the nullcline g = 0
is typical of a substrate-inhibition mechanism. The ratio of the diffusion coefficients on the
membrane is £ and the scale of the reaction domain is v, as before. Thus again the size of the
domain is proportional to y (that is, its linear dimensions are proportional to /7).

The uniform steady states of the system (4) are the solutions of f(s, ) = 0 = g(s, a) and denoted
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by $, @, that is the intersection of the two curves in figure 9. We are concerned here with the
parameter range where only one such solution exists. The forms of fand g in (4) are such that
for a range of the inhibition parameter K the steady state §, 4 in figure 9 can be diffusionally
driven unstable in the Turing (1952) sense. It can be shown that # > 1 is necessary, that is the
species s and a must diffuse at different rates to have a diffusion-driven instability (Murray
1977, 1981).

When the mechanism (4) exhibits diffusional instability it means that the uniform steady
state §, d is unstable to small spatial disturbances. We can consider zero flux boundary conditions
for s and a on the reaction—diffusion domain boundary, or alternatively, periodic conditions
that reflect the closed surface nature of an embryo’s integument. The general features of the
patterns obtained are similar.

On a linear basis, that is small variations from the homogeneous steady state, the instability
manifests itself in certain unstable modes (solutions) that depend on the scale and geometry of
the domain for a given set of parameters in (4). For example, if the domain (integument) is a
rectangle 0 < x < x5, 0 < y <y, with x, y Cartesian coordinates and x,, y, constants, small
amplitude solutions about (§,d) of (4) satisfying the zero flux boundary conditions are of the

form
ermnt cos (nmx/x,) cos (mmy [y,) (5)

for integers m, n. The constants A,,, determine the stability: the specific solution (5) is unstable
if m and n are such that A,,,, > 0 since the amplitude grows with time. If A,,,, < 0, it is a stable
solution and it tends to zero (s—§, a - &) with time.

If the system (4) with zero flux boundary conditions is diffusionally unstable, then a range of
solutions, such as (5), are unstable. For the rectangular domain the integers m, n for such unstable
modes (and hence spatial pattern generating solutions) can be shown (Murray 1979, 1981) to

satisfy Y(X=Y) < n?(n?/x3+m?/yd) < y(X+7Y),
where

X = %?(ﬂ+M+a+N), Y = 2—‘/§{(ﬁ+M_a_N)2+4MN}%,
_ (Bralt —Ks?)
M= {(1+5+ks2)2:s

a

P
-5 N {1 +-Y+KS2L
—a a

ISR

For a fixed set of parameters in the kinetics in (4), the X and Y are simply fixed numbers. The
values of X and Y reflect the specific substrate-inhibition reaction kinetics that we are considering
and thus remain fixed for given parameter values.

For illustration, if & = 1.5, p = 13, 5, = 102, a, = 77, K = 0.1, # = 5, then the unstable
solutions (5) have integer pairs satisfying, from (6),

0.036y < n?/x3+m?/y2 < 0.115y, (7)

from which the roles of the scale (y) and shape (relative size of x, and y,) can be clearly seen.
Supposey = 1, x, = 3 and y, = 1; then the only unstable mode (5) hasm = 0, n = 1: this implies
a spatial pattern that has half the domain s > § and the other half s < §, as in the second case
in figure 10. As the domain size (y) increases, so do the number and type of unstable solutions;
in other words, the solutions with all the m, n satisfying (7) with the larger y. If the domain is
long and thin, x4 > 1, y, < 1, and so the only unstable modes are those with n # 0 and m = 0
since m?/y3 with m > 1 lie outside the range allowed by (7). We thus see that if the domain is
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too thin, essentially only one-dimensional modes can be unstable. If the domain is too small,
that is y is small, there are no m and n satisfying (7) and so no spatial pattern can be obtained
like the first case in figure 10. On the other hand, if the domain is such that neither x, nor
y, are too small, two-dimensional unstable modes are possible. The first four examples in
figure 10 illustrate these points. With periodic conditions in place of zero flux conditions, the
same expressions hold, namely (6) and (7) but with }y in place of y.

= © oom 2R

Qyxx> IRV Iss

Ficure 10. Effects of geometry and scale on spatial pattern generated by the model mechanism: simple linear
theory predictions with dark-light regions denoting concentration values s > 3/s < §, where § is the
homogeneous steady state.

If we now consider the domain to be the surface of a tapering circular cylinder, the linearly
unstable solutions are of the form (Murray 1979, 1981)

ermat cosnf cos (mnz/l), y(X-Y) < n®/r2+m®n?/> < y(X+7Y), (8)

where the tapering cylinder is of length / with 0 < z < / and with circumferential variable 6.
Here the local radius r of the cylinder is just a parameter. From (8) we see that if  is small,
even n%/r? with n = 1 is too large to lie in the range (8) and so only n = 0, m # 0 modes in (8)
can be unstable. This implies the presence of only stripes, the equivalent of what is shown in
the fifth case in figure 10. If, however, r is large enough near one end so that z» # 0in (8), genuine
O-variations are possible. We thus arrive at the possibility shown in the last of figure 10, namely
a gradation from two-dimensional pattern at the thick end to the one-dimensional structure at
the thin end.

5. APPLICATION OF THE MODEL MECHANISM TO
SPECIFIC GEOMETRIES AND ANIMALS

The analytical solutions described in §4 are those obtained from a linear theory that gives
only the spatial time-dependent behaviour near the onset of the instability. When the system
is diffusionally driven unstable, these linearly unstable solutions evolve into a finite-amplitude
steady-state heterogeneous structure. The full nonlinear mechanism (4) has to be solved by using
a finite element numerical method with initial conditions taken to be random variations about
the steady state §, 4. Typical computer times for a run are of the order of 1-2 min. I denote, in
the following figures from the computed solutions, areas with s > § by dark shading and s < §
without shading. If the domain is too small no pattern is obtained, ifit is long but very narrow,
only one-dimensional stripes can result, as suggested in §4. As the domain increases in size, y
increases, more two-dimensional patterns appear.

I considered the mechanism (4) for various two-dimensional geometries for one set of para-
meters s, a,, &, p, K, f, and varied only the scale factor y. Figures 11-14 illustrate the results.
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(a) (b)

scapular

stripes
——
?

Ficure 11. (a) Predicted spatial pattern from the model mechanism (4) based on a linear theory. (6) Typical
examples of scapular stripes on the foreleg of zebra (Equus zebra zebra).

Ficure 12. Finite amplitude spatial patterns generated by the reaction-diffusion mechanism (4) with parameter
values @ = 1.5, K = 0.1, p = 18.5, 5, = 92, a9 = 64 (steady state § = 10, @ = 9) and diffusion coefficient
ratio # = 10: (a) scale factor y = 9, (b) ¥ = 15, (c) ¥ = 25. Note that for the same geometry, ¥ is a measure
of scale. (d)—(f) Various animal tail markings: (d) Zebra (Equus burchelli chapmani) from Willoughby (1974);
() genet (Genetta genetta) ; (f) cheetah (Acinonyx jubatis).

Figure 114 is the schematic model prediction of the pattern that will result when two regions
that individually exhibit one-dimensional stripe patterns (as in the third of figure 10) combine
as shown. Figure 115 shows typical examples of the scapular stripes on the foreleg of zebra.

Figure 12 represents some actual solutions for the finite steady-state structure in s for the
planar surface associated with a cylindrical surface that is tapered. As the cylinder size (y)
increases, genuine two-dimensional effects appear. In figure 12¢ we see how the pattern changes
from a two-dimensional to a quasi-one-dimensional pattern, a common feature on spotted
animals where spots degenerate into stripes at thin extremities, as on tails and legs.t Figure
12d-f gives some practical examples from specific animals, typical of their species: figure 12d
is possibly a parallel for figure 125.

T This indicates a genuine developmental constraint, namely that it is not possible to have a striped animal
with a spotted tail: the converse is quite common.

[ 62]


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

PATTERN FORMATION MECHANISMS 489

Figure 13a is a sketch of a giraffe embryo 35-45 days old (after Murray 1981): it clearly has
the distinctly recognizable giraffe shape, even though the gestation period is about 457 days.
We expect the pre-pattern for the coat pattern to be laid down by this time. Figure 13bis a
sketch of typical neck markings on the reticulated giraffe, with figure 13 ¢—¢ tracings, on approxi-
mately the same scale, of trunk spots from the major species. Figure 13f shows two patterns
computed from the mechanism (4) with the same parameter values as for figure 12. The giraffe
is one of the largest animals that still exhibit a spotted pattern.

< X >
oS Ve K
»get -4 *

Ficure 13. (a) Giraffe (Giraffa camelopardalis) : 35- to 45-day embryo (after Murray 1981). (b) Typical neck spots
on the reticulated giraffe (Giraffa camelopardalis reticulata). (c)-(e) Tracings (after Dagg 1968) of trunk spots
(to the same scale) of giraffe, Giraffa camelopardalis (c) rothschildi, (d) reticulata, (e) tippelskirchi. (f) Spatial
patterns obtained from the model mechanism (4) for two different geometries: parameter values as in
figure 12.

To show clearly the dramatic effect of scale we considered the shape illustrated in figure 14.
It is not suggested that this is a typical shape at the time of pre-pattern formation: it is only a
specimen non-simple shape to demonstrate the results. If the size is too small (y small), no
spatial structure can exist. This implies that very small animals can be expected to be uniform
in colour; most of them are. As the size increases, spatial patterns can be sustained. For very
large domains as in figure 14f, the concentration distribution is again almost uniform. This,
at firstsight unexpected, resultis related to the fact that for large y the linearly unstable solutions
of the form (5) have large m and n, which implies a very fine scale of pattern: so small, in fact,
that essentially no pattern can be seen. This implies that very large animals are almost uniform
in colour, as indeed most are.

Figure 15 gives two striking examples of the half-black, half-white pattern in figure 14a,
namely the ratel or honey badger (Mellivora capensis) and the Valais goat (Capra aegagrus hircus).
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(5)

(d) (e)

Ficure 14. Effect of body surface scale on the spatial patterns formed by the reaction-diffusion mechanism (4)
for a = 1.5, K = 0.125, p = 13, 50 = 103, gy = 77 (steady state § = 23, @ = 24) and £ = 7. Domain
dimension is proportional to 4/y. (a) ¥y < 0.1; () ¥y = 0.5; (c) ¥ = 250; (d) y = 1250; (¢) ¥ = 3000;
(f) v = 5000.

Ficure 15. Examples of the simplest melanin pattern found in animals: (a) ratel or honey badger (Mellivora
capensis), (b) Valais goat (Capra aegagrus hircus, after Herat (1976)).

CoONCLUSIONS

Lepidopteran wings
The simple model proposed for generating central symmetry and dependent patterns on
wings of Lepidoptera involves a morphogen released from sources (which I consider as zones
of polarizing activity) on the wing edges and wing cell veins respectively. The morphogen
operates a plausible biochemical switch mechanism to produce a steady-state spatial distribution
in a gene product or colour-specific enzyme. This spatial pattern is reflected in the ultimate
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pigmented pattern as a result of pigment cells’ reacting to the product level laid down. When
computed solutions from the model, for the central symmetry patterns, are compared with
certain general features in the wings of Ephestia kiihniella and the experimental work on them
(Kiihn & von Engelhardt 1933) and Limantria dispar (Henke 1948), there is some circumstantial
evidence that suggests that such a diffusion model may well be the governing mechanism at
least for these species. Evidence from the model and comparison with specific butterflies for
dependent patterns, figures 7 and 8, provide further support for diffusion control of pattern.

Experimentally (Kithn & von Engelhardt 1933) a determination stream is evident in the
pupal stage shortly after pupation. Dimensions of the field of pattern formation are of the order
of several millimetres, which is much larger than any found so far in embryonic fields. One
reason for their non-existence in the early stages of embryogenesis is that the development of
pattern via diffusion would in general take too long if distances are much larger than a millimetre.
In pupal wings, however, this is not so, since pattern can develop over a period of days during
which the scale and geometry does not vary very much.

If there is a combination of reaction and diffusion, not only can pattern be formed as we saw
above, but biochemical messages can also be transmitted: the latter are very much faster than
pure diffusion (Murray 1977; Britton & Murray 1979). With butterfly and moth wing patterns,
such reaction-diffusion times are too fast unless, of course, they are the means of conveying
switch information. Even in the formation of occeli (Nijhout 19804), diffusion times would
seem to suffice.

It is most likely that several independent mechanisms are operating, possibly at different
stages, to produce the diverse patterns on butterfly wings (Schwantwitsch 1924; Siiffert 1925,
1927). It is perhaps reasonable to assume, as a first step, that the number of mechanisms is the
same as the number of melanins present. In the case of the nymphalid Precis coenia there are
four differently coloured melanins (Nijhout 19805).

With the relatively few pattern elements (in comparison with the vast and varied number of
patterns that exist) needed in Siiffert’s (1925, 1927, 1929) groundplan, it seems worth while
to explore further the scope of pattern formation possibilities of plausible biochemical diffusion
models such as those discussed in this paper. Emphasis should perhaps be with the wing cell
as the principal unit (Nijhout 1978). Lepidoptera are particularly suitable for study, since it
appears that pattern in the wings is developed comparatively late in development. At the least
it would be of interest to study the effect of removal and transplanting of the zones of polarizing
activity and of temperature on dependent patterns.

Animal coat markings

A reaction—diffusion mechanism, of which (4) is simply a specific practical example that
involves substrate inhibition, exhibits pattern features found in animal coat patterns and these
patterns reflect certain general trends. We thus reaffirm the suggestion that a reaction—diffusion
mechanism is a possible universal pattern formation mechanism for animal coat markings. The
pre-pattern is determined by the size and shape of the integument at the time of laying down.
This is probably quite early in gestation. For the zebra, Bard (1977) suggests a time approxi-
mately in the 3rd or 4th week. In the model, boundary conditions also play a role but are of
less importance: zero flux and periodic conditions give qualitatively similar patterns. The size
and shape can only be estimated deductively, since the integument of most foetal specimens
is uniform in colour unless just pre-natal or just post-mortem. In the giraffe the rosette patterns
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are seen by about 100 days through gestation, but they quickly disappear post mortem (A. J.
Hall-Martin, personal communication 1978).

If the pattern formation mechanism is activated (such as by a reduction of the inhibition
factor K in (4) by a genetic switch initiating a fast reaction-diffusion wave (Kernevez et al.
1978; Britton & Murray 1979)) when the surface is small, uniformity in colour is expected as
found in most small animals. On the other hand, if the surface is very large, the mechanism
again predicts essentially uniformity, as with the elephant, rhinoceros, and so on.

The first divergence from uniformity in domains long compared with width are stripes. An
increase in domain results in patterns such as those on the backs of tigers and zebras. Further
increase results in spots with stripes at extremities. For yet larger domains, the spots tend to
fill the available space, with the giraffe possibly the largest spotted animal (compare figures
13fand 14¢). Uniformity ultimately again results.

In strictly one-dimensional spatial domains, as discussed by Mimura & Murray (19784, b),
the fastest growing linear unstable mode predicted the final steady-state structure. In two
dimensions this no longer holds: the final steady state depends on the initial conditions. This
introduces an important randomness which is a positive, or indeed necessary, attribute of the
mechanism. The patterns obtained for a given set of parameters but different initial conditions
are qualitatively similar for a given geometry and scale. This is in keeping with the individuality
in animal markings within a species. Since initial conditions always have a random element,
individuality of the final pattern is assured.

For the computed patterns obtained from the model mechanism, one set of parameters were
taken and only the scale, y, was varied. Even so, the wealth of patterns that can be obtained
exhibit certain general features found in pelage markings. It is reasonable to suppose that with
other parameter ranges, all of the known patterns on animals can be qualitatively duplicated.
With the numerical programme used it is not difficult to seek them, since each run (that is one
pattern for a given geometry) takes of the order of 1 min.

The final spatial pattern is determined by the size and geometry of the domain at the time
in the embryonic development that the genetic switch, initiating the mechanism, is activated.
This time is probably inherited and would suggest that general but not specific markings are
inherited. This seems to be so at least for neck markings on the giraffe (Dagg 1968).

The above results are only a few of those found for the mechanism (4), but they nevertheless
support a single all-encompassing mechanism for pattern formation for animal coat markings.

MATHEMATICAL APPENDIX
DIFFUSING-MORPHOGEN—GENE-ACTIVATION MODEL MEGHANISM

The model mechanism for central symmetry patterns involves the morphogen, with con-
centration §, released in an amount S, at the wing boundaries at A and Pin figure 1, the idealized
wing geometry under consideration. The morphogen satisfies, from § 2,

oS 02§ 1038 102§

= (G ra triom) S (A1)
where r and 6 are polar coordinates, ¢ the time, D/(cm?2s~1) the diffusion coefficient and K /s~1
the decay relaxation constant. The wing, the diffusion domain for (A 1),isr; <7 < 7,0 < 6 < 6,.
S satisfies zero flux boundary conditions and S, is released from A (r = 75, 8 = 6,) and P (r = rp,
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6 = 0) as delta functions at ¢ = 0. Initially § = 0 everywhere. Thus §(r,6,¢) has initial and
boundary conditions for (A 1), as

S(r,0,0) =0 for r,<r<r, 0<06<0y
S(rp, 0,8) = Sg8(t) = S(ra, 00, )5
oS/or=0 for 0<
0§/060 =0 for r <r

where &(t) is the Dirac delta function. Equations (A 1) and (A 2) uniquely determine § for all
time ¢ > 0 and 7,6 on the wing. A one-dimensional solution ((A 8) below) is illustrated in
figure 3. At any position (r,0) on the wing in figure 1¢ the morphogen level increases from
zero to a maximum value Sy, (r, #) and then tends to zero again as ¢ — oo.

Transcription of the gene to give a product or activation of a cell-specific enzyme, which is
initially everywhere zero, is governed by a biochemical switch mechanism. The illustrative
mechanism from § 2 above is the ordinary differential equation for g(¢).

dg _ K, g*
3= KIS+K4+g2

(A2)

00y r=r, 7=r15
Sry; 0=0, 0=0

—Kyg, g(0) =0, (A3)

where g, the product concentration, is a function of time and space (through S). Equations
(A 1)-(A 3) have to be solved simultaneously (although §is independent of g). If the parameters
are in an appropriate range this mechanism generates a stable steady-state spatial pattern in
&, as explained in § 2.

As always, it is convenient to introduce non-dimensional quantities to isolate the key para-
meter groupings and indicate relative importance of terms and to make the system units in-
dependent. Let //cm be a standard reference length and a/cm, for example r, —r,, a relevant
length in the wing of interest. Introduce dimensionless quantities by

y=(a/l)2, §'=S8/S,, r' =rfa, ¥ =(D/a%t,
k=KRB/D, k,=K,S8,2/DJK,, k,=K,S, 12/D4K4,‘
ky = K3*/D, g =g/\K,
I shall now omit the primes in what follows, for algebraic simplicity. The non-dimensional
equations (A 1) and (A 3) become, by using (A 4),
oS 02§ 105 102§

(A4)

woar T Tram VRS
ég ky? (A 5)
x=" (k1S+Ti—g2_k3g) = vf(9),

where f(g) is defined by (A 5).

The reason for introducing vy is for convenience in making scale changes simply. If our
‘standard’ wing has a = [, that is ¥ = 1, then for the same parameters a similar wing but twice
the size has a = 2/, thatisy = 4, but it can be represented by the same-sized figure as for y = 1.
Thus v is a direct measure of scale, and is incorporated in the equations.

The initial and boundary conditions (A 2) in non-dimensional form are algebraically the
same except that now

S(rp, 0, t) = 8(t) = S(ra, 0o t):
and all quantities are the dimensionless equivalents from (A 4).
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So that the gene kinetics exhibit a switch mechanism as illustrated in figure 24, the parameters
ky, k, and k, must satisfy certain relative size conditions. These are that f(g), from (A 5), must
have a minimum and maximum for all § > 0 of interest: that is df(g)/dg = 0 must have two
real roots, which requires that £, > (4/3) k5. Also, when § = 0, we require as a sufficient condition

f(g) = 0 to have three real roots, namely g = 0, g = g,, g = g3 with 0 < g, < g3, as in figure 2a.
This requires that k, > 2k,, which covers the previous restriction. Stability of these steady states
is obtained from a linearization of the second of (A 5) about the steady states. Writing f'(g) =
df(g)/dg, we see that a steady-state g; is stable (unstable) according to whether f'(g;) < 0
(f'(gs) > 0). Thus g, is always stable, g, unstable and g = 0 stable if § = 0 and g = g;, the first
root when § > 0, but S < S, (in figure 24), is stable. Arrows in figure 24 indicate the direction
of g as a function of time: the stability or instability is thus indicated.

For the central symmetry patterns, (A 5) were solved numerically by using a finite difference
scheme: the computing time for a single case was of the order of 1 min. For illustrative purposes
a fixed set of parameters £, k,, k,, k5 was chosen and only the scale, that is y, and the geometry
were varied. Results are given in § 3.

For comparison with microcautery experiments (Kithn & von Engelhardt 1933), a hole,
representing destruction of the cells through which S diffuses, was inserted in the wing,
as in figure 4. Since the mechanism is considered to operate during the pupal stage, the mor-
phogen can still diffuse into the hole and is then considered inactive or lost, I chose the mathe-
matical boundary condition § = 0 on the hole boundary. More general conditions could
easily be used if necessary. Results for this situation are also given in § 3.

For dependent patterns I consider the same mechanism (A 5) with the same boundary
conditions (A 2), but now I consider the domain to be an individual wing cell, as in figure 3a.
The initial conditions, in place of the second and third equation in (A 2), are taken to be

S(r,0,8) = pd(t) = S(r,0p,t) for 7, <r <y, (A 6)

which reflect the fact that the veins are now the source of morphogen S, with p simply a para-
meter that can be varied so as to be able to vary the amount of morphogen released. Again,
spatial patterns in g are obtained.

With dependent patterns in wing cells in which the veins are approximately parallel, the
diffusing morphogen problem is one-dimensional (at least away from the discal cell vein). The
problem, in dimensional form in this case, requires the solution of

08/0t = Do2S/0x%— KS, §(0,t) = S,8(¢), (A7)
namely
S(x,t) = (So/4nKt) exp{— (x2/4Dt+ Kt)}, t > 0. (A 8)

For a given x the maximum i§ achieved, §,,,,, is given at time ¢,, where 35/0t = 0, which from

(A 8) is given by
1 Kx?\?
w=gr |-+ (145}
which on substituting in (A 8) gives
Smax(%) = {So/2n(z—1)}e*, z = (1+Kx2/D)%. (A9)

Now from the kinetics mechanism, (A 3), the limiting S,,,,, denoted by S, that will effect a
switch from g = 0 to g = g5 in figure 24 can be used in (A 9), by setting .« = Se, to calculate
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the distance x. from the vein where g = g3 and hence in our model the domain of a specific
pigmentation. That is, x. is the solution of

Se = {Sy/2n(zc— 1)} e~%, where x.={(D/K)(z2—1)}t.
An alternative form of the last equation for x. is
ze+In {2n(Se/Sy) (2= 1)} = 0, xe = {(D/K) (2= 1)}, (A 10)

which is the form used in (3) in § 3. Note that z. and S./S, are pure numbers with z, the solution,
a function of S¢/S,. Then with D/(cm?s~1) and K/s~! the critical x. is in centimetres and it
depends only on D, K and the ratio Sc/S,.

A similar finite difference numerical scheme was used for finding the dependent patterns
generated by the mechanism. Some results are presented in § 3 above.
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